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The abridged Langrangian-history direct-interaction (ALHDI) approximation 
(Kraichnan 1966) and the strain-based abridged Lagrangian-history direct-interac- 
tion (SBALHDI) approximation (Kraichnan & Herring 1978) are integrated numer- 
ically for isotropic turbulence in two and three dimensions and compared with data. 
A t  moderate Reynolds numbers in three dimensions, comparison with the computer 
simulations by Orszag & Patterson (1972) shows that the ALHDI gives numerically 
excessive energy transfer in the dissipation range while the SBALHDI approximation 
displays satisfactory accuracy in all ranges. In two dimensions, both approximations 
are in reasonable agreement with the simulations of Herring et al. (1974), the ALHDI 
approximation showing the better accuracy of the two at  low wavenumbers. At 
high wavenumbers the SBALHDI approximation again transfers less energy than 
the ALHDI approximation but the effect is less marked than in three dimensions and 
the two curves straddle the data. High Reynolds number integrations of both approx- 
imations in three dimensions agree well with the tidal-channel inertial- and dissipation- 
range data of Grant, Stewart & Moilliet (1962), the SBALHDI approximation 
yielding a somewhat larger value of Kolmogorov’s constant than the ALHDI approx- 
imation. The origin of the difference in straining efficiency between the two approxima- 
tions at  high wavenumbers and of the dependence of this difference on dimensionality 
is exhibited by application to the stretching of small scales of a convected passive 
scalar field. In  three dimensions the SBALHDI approximation gives markedly 
larger values of the constant in Batchelor’s (1959) k-1 spectrum range than the ALHDI 
approximation and is in better agreement with experiment. The SBALHDI values of 
Batchelor’s constant satisfy Gibson’s (1968) lower bound while the ALHDI values 
do not. 

1. Introduction 
In  a recent paper (Kraichnan & Herring 1978, cited hereafter as I) we have proposed 

a variant of the abridged Lagrangian-history direct-interaction (ALHDI) approxima- 
tion for incompressible turbulence (Kraichnan 1965,1977). The ALHDI approximation 
is based on the correlation between the velocity at a given space-time point and the 
velocity measured at  earlier times along the fluid-particle trajectory passing through 
that point. In the new approximation the correlations of the symmetric straining field 

0022-1 120/79/4208-6100 $02.00 @ 1979 Cambridge University Press 



582 J .  R.  Herring and R.  H .  Kraichnan 

along the particle trajectories form the fundamental basis. It is therefore called the 
strain-based abridged Lagrangian-history direct-interaction (SBALHDI) approxi- 
mation. 

The present paper describes numerical integrations of the two approximations for 
decaying isotropic turbulence in two and three dimensions. The results are compared 
with computer simulations at  moderate Reynolds numbers and with the tidal-channel 
data of Grant et al. (1962) at high Reynolds number. 

The Eulerian symmetric straining field is defined in terms of the Eulerian velocity 

(1 .1)  
field by 

The velocity and straining field values measured a t  time s along the fluid-particle 
trajectory which passes through (x, t )  are denoted by ui(x, tls) and b,(x, t ls), respec- 
tively. The differences between the ALHDI and SBALHDI approximations arise from 
the fact that in general 

bij (x, t )  = au,(X, t ) /axj  + at+, t)/ax,. 

bJx, t ls )  * au,(x, tls)/axj + auj(x, tls)/ax, (1.2) 

unless t = s. As noted in I, (1.2) has a simple meaning. The left-hand side of (1.2) is 
the rate-of-strain tensor measured a t  time s on the trajectory, while the right-hand 
side is proportional to the velocity difference a t  time s between the trajectory passing 
through (x, t) and an infinitesimally displaced trajectory passing through (x + 6x, t ) .  
The displacement between the trajectories varies with s and in general is not 6x 
unless t = 8. Thus the velocity difference at  time s is not simply proportional to the 
local Eulerian velocity gradient. The dynamical implications of (1.2) have been dis- 
cussed in I and will be returned to later in interpreting the numerical results. 

The underlying motivation of the SBALHDI approximation is that a theory in 
which straining plays the fundamental role may be more faithful in representing the 
straining of small scales than one in which velocity is considered fundamental. The 
present numerical investigation provides some tests of this idea. 

2. The ALHDI and SBALHDI equations for isotropic turbulence 
The ALHDI approximation for isotropic turbulence (Kraichnan 1965, 1977) yields 

a closed set of equations involving only the defining scalar U ( k ,  t l s )  of the Lagrangian 
velocity correlation and a corresponding scalar G(k,  t l s )  associated with the averaged 
Green’s tensor for response of the velocity field to infinitesimal perturbations. U ( k ,  t l s )  
satisfies 

(ui(x, t) ui(x’, t l s ) )  = U(k ,  t l s )  exp [ ik .  (x -x’)] dk. (2.1) s 
The final equations for the SBALHDI approximation involve instead the defining 
scalar of the Lagrangian strain correlation UB(k,  t l s )  and a corresponding response 
scalar G B ( k ,  t l s )  for the straining field. Because of the relation (1 .1)  between Eulerian 
velocity and straining fields, UB(k, t ls)  may be written in terms of velocity-strain 
correlations and satisfies 

(ui(x, t )  abin(x’, t1s)/axA) = - k2UB(k, tls) exp [ ik .  (x - x‘)] dk. (2.2) 

(2.3) 

s 
It follows from (1 .1)  and (1.2) that 

UB(k, t l t)  = U(k ,  t l t )  
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and UB(k, t l s )  9 U(k ,  t l s )  ( t  9 8). 

If E(k,  t )  is the energy spectrum, such that 

is the kinematic energy per unit mass, then 

2n-k2U(k, t l t )  (three dimensions), 

nkU(k, tlt) (two dimensions). 
E ( k , t )  = 

583 

(2.4) 

Both the ALHDI and the SBALHDI equation sets may be written in the following 
form : 

(a/at+ 2vk2) U(k ,  tlt) 

=2/Adpdqcipq / t d s [ G ( k , t l s )  t o  U ( p , t l ~ ) - G ( p , t l s )  U ( k t ) s ) l  U ( q , t ( s ) ,  (2.6) 

Here Kkp and z k p  are defined by 

Kkp = [ - 6 ( k - p )  dp'1"'' dq C ; p , , + / k + p  dq Cipg]  U(p, t l s )  (2.9a) 
Ik-p'l lk-pl 

and 

(2.9b) 

v is kinematic viscosity and $A denotes integration over all p and q which can form a 
triangle with k.  The velocity field is assumed to be normally distributed at the initial 
time to. 

In  the case of the SBALHDI equations U and G must be replaced by UB and GB 

everywhere in (2.6)-(2.9). Apart from this, the two approximations differ only in the 
coefficients C, whose form as functions of k, p ,  and q are given in the appendix. For 
derivations of (2.6)-(2.9) we refer to Kraichnan (1965, 1977) and 1. We have 
written these equations here in a form convenient for numerical work. 

The numerical integration methods used here to treat (2.6)-( 2.8) have been partially 
described in Herring & Kraichnan (197 1) .  Discretization of the wavenumber domain 
is effected by cubic splines. Let k, (n = 1, 2, ..., N )  be a set of wavenumber points at  
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Dimen- 
Run sions E(0) ~(0) k,, k,,, I t  Eli dt v N  

1 3 1.5 0.85 1.00 31.1 0.42 42.0 0.025 (DI) 0.01 20 

2 3 1.5 3.63 1.00 31.1 0.20 19.7 0.025 (DI) 0.001 20 

3 2 1.5 - 1.00 63.0 0.90 58.6 0.04 0.005 20 
4 2 1.3 0.10 1.00 63.0 0.685 308.0 0.04 0.0025 20 
5 3 37.1 19.3 ‘0.125 64.0 - 244.0 0.02 0.008 20 

0.04 (ALHDI) 

0.04 (ALKDI) 

t For runs 1 ,  2 and 5 , l  and R, are the Taylor microscale and corresponding Reynolds number, 
while for the two-dimensional runs 3 and 4 these are the enstrophy-based integral scale and 
Reynolds number, aa defined by Lilly [see Herring et al. 1974, equations (2.9) and 2.10)]. 

TABLE 1 

which the integration on the right-hand side of (2.6)-(2.8) is to be performed. Then 
we approximate U ( k )  and G(k)  by 

N 

n= 1 
U ( k )  = X u(kn)q5n(k)) $n(krn) = Snm, 

G ( k )  = c G(k,) q5n(kL 
N 

1 

and compute (and store) the integrals of the B,, and C,,, functions over appropriate 
products of cardinal functions q5n(p) and q5rn(q), thereby replacing the d p  dq integrals 
in (2.6)-(2.8) by finite sums. In practice, these numerical integrations are effected by 
Gaussian methods, and the integrals over q5n(p) and q5rn(q) are replaced by equivalent, 
but more economical, ones over B-splines (de Boor 1977). 

Our treatment of the time integration is somewhat different from that which we 
have used before. The most important new element is to regard the quasi-linear terms 
vk2, K ( k , p )  and R ( k , p )  in (2.7) and (2.8) as specified during a time step, and the re- 
maining terms in these equations as a forcing function for aU(k,  t l r ) /a t  and aG(k, t lr)/at .  
The effect of the quasi-linear terms is then treated exactly by using the eigenvalue 
and eigenfunctions generated by the operators 

- vk2S(k, k’) + R ( k ,  k’),  - vk2S(k, k’)  + K(k,  k’) 

and their adjoints. The resulting system is then written as a generalized modified 
Euler scheme of second order and iterated twice. This refinement is necessary to assure 
good convergence to the three-dimensional problem for cases in which the initial 
energy spectrum has little energy a t  large wavenumbers. In  practice, invoking the 
needed eigenvalue routines added little to the computation time, and permitted larger 
time steps to be taken. The wavenumber truncation procedure used is systematically to  
discard any contributions to the right-hand side of (2.6)-(2.8) for which any k, p or q is 
out side ( kmln , k,,, ) . 
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FIGURE 1.  Total energy dissipation s ( t )  according to various approximations : ---, ALHDI ; 
-.- , SBALHDI; ---, DI. Initial energy spectrum is (3.1); other data for run are given 
in table 1. Circles and triangles show two realizations of simulations by Orszag & Patterson (1972). 
The dotted line gives pure viscous decay. 

3. Numerical results 
3.1. Low Reynolds number in three dimensions 

We shall now compare numerical integrations of the SBALHDI and ALHDI equations 
with the parent direct-interaction (DI) approximation (Herring & Kraichnan 1971) 
and with the computer simulations of isotropic turbulence by Orszag & Patterson 
(1972). We consider two forms of initial energy spectra: 

and 
E(k,  0) = 16(2/n)* ~ f k ; ~ k 4  exp [ - 2(k/k0)2] 

E(k,  0) = (Qwf h2k) exp ( - hk). 

(3.1) 

(3.2) 

We call (3.1) run 1 and (3.2) run 2. For run 1, wo = 1 and k, = 4.757, and for run 2, 
vo = 1 and h = 0.12022. Run 1 is chosen for comparison with the Orszag-Patterson 
(1972) data. Run 2 evolves quickly into a self-similar spectrum of the sort found in 
wind-tunnel experiments. Other information needed to specify the numerical calcu- 
lation (viscosity v, cut-off wavenumbers kmln, /Imax, length scale 1, Reynolds number 
R,, total energy E(O), energy dissipation s(O), time step dt and number of interpolation 
knots N )  is listed in table 1.  (Runs 3 and 4 listed there are similar runs for two-dimen- 
sional turbulence, and run 5 is at large Reynolds number, in three dimensions. These 
will be described soon.) 

Figure 1 shows s(t) for run 1 according to the ALHDI, SBALHDI and DI approx- 
imations and two numerical simulations of Orszag & Patterson (1972). The dotted line 
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I~’IQWRE 2. Skewness factor 8 ( t )  as defmed by (3.3) according to various approximatiom and 
numerical simulations for run 1.  - , ALHDI; -.-, SBALHDI; ---, DI. Initial energy 
spectrum and other data same m for figure 1.  

L SBALHDI 

/ALHDI 

FIQURE 3. 
according 
ALHDI; - 
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FIGURE 4. Skewness factor S( t )  for run 2. 

here gives s(t) for pure viscous decay. We notice that the DI and SBALHDI approx- 
imations and the numerical simulations are in good agreement, while the ALHDI 
approximation significantly overestimates the energy dissipation during the early 
phase. Related behaviour is displayed in figure 2 by the skewness #( t ) ,  defined as 

(3.3) 

In (3.3), T ( k ,  t )  is the energy transfer function, defined such that the energy spectrum 
satisfies 

aE(k, t)/at + 2vk2E(k, t )  = T(k,  t ) .  (3.4) 

Again the DI and SBALHDI approximations agree well with the simulations, but 
for the ALHDI approximation #( t )  is significantly larger than the simulation value. 

Figures 3 (a )  and (b )  show the energy dissipation spectrum D(k, t )  = 2vk2E(k, t )  at 
t = 0.4 and 0.8 as a function of k for run 1. At the largest wavenumbers, D(k,  t )  for the 
ALHDI approximation is too large by a factor of 4 at t = 0.4 and by a factor - 2 at 
t = 0.8. At both times the DI approximation is in good agreement with the numerical 
simulations, while the SBALHDI approximation is significantly better than the 
ALHDI approximation but perhaps not as good as the DI approximation. The 
peculiar shape of the ALHDI curves for k just beyond the maximum of D(k)  appears 
to be related to the strong effect of truncating k at k = 31. 

We have noted in $ 5  of I that the ALHDI equations yield the inviscid energy- 
equipartition equilibrium spectra (for a system truncated in wavenumber), but that 
this is not true of the SBALHDI approximation. However (see I), the SBALHDI 
equations yield the equilibrium spectra if subjected to a slight change : the replacement 
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FIGURE 5. Energy dissipation spectrum D(k,  8 )  for run 2 a t  t = 0.6. 
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of C&,, (see equation (A 8) of the appendix) by an altered coefficient in which 

P”( - q )  + P( - q) .  

If this is done, the agreement with the present numerical simulation is negligibly 
altered; for example, for run 1 the skewness a t  t = 0.8 is reduced from 0.4475 to 0.4442. 

Figures 4 and 5 show results for the more self-similarly evolving spectrum (3.2). 
Figure 4 shows that the ALHDI value of the skewness exceeds the D I  value by an 
amount roughly the same as for spectrum (3.1), whereas the SBALHDI curve is 
closer to the D I  curve. Similarly the ALHDI dissipation spectrum (figure 5 )  exceeds the 
D I  spectrum at large k by about a factor of 2, as found for run 1. We should remark 
that the spectral shapes for all theories become self-similar for t > 0.3. Numerical 
simulations for the spectral shape (3.2) have yet to be done with sufficient accuracy 
to make comparisons with theory. 

3.2. Two dimensions 

We next examine two-dimensional turbulence, comparing the approximations with 
the numerical simulations by Herring et al. (1974). The initial spectra investigated are 
(3.1) (with vo = 1, E ,  = 8) and (3.2) (with vo = I ,  h = g), with other parameters of the 
calculation as listed in table 1 .  Note that the Reynolds number for run 4 is much 
larger than that for the previous three-dimensional run. We do not compare D I  results 
with the simulations; previous calculations (Herring et al. 1974) indicated that this 
approximation performs poorly in the enstrophy transfer range of two-dimensional 
flow because it does not preserve invariance to  random Galilean transformations. 

Figures 6 and 7 summarize the gross energy and enstrophy transfer characteristics 
for run 4. Figure 6 gives the integrated energy transfer to low wavenumbers and figure 
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FIUIJRE 8. k4E(k, t = 0.8) as a function of k: for ALHDI approximation (solid line), SBALHDI. 
approximation (dot-dash line) and Fox-Orszag simulation (points) for (a) run 3 and (b) run 4 
(see table 1). 

7 gives the enstrophy transfer to high wavenumbers. The first of these quantities is 
defined as 

and the latter by 

rI,(t) = lOk'dk T(k,  t )  
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klk,  

)/d a t  t = 0.3 as a function of k/k,  for E ( k ,  0 )  given by (3.7). Here # ( k )  is 
given by (3.8), e is the dissipation of kinetic energy and k, is the Kolmogorov wave number. 
Parameters are those of run 5 listed in table 1. -, ALHDI; -.- , SBALHDI ; points, data 
of Grant et al. (1962), cf. Kraichnan (1966). 

FIQURE 9. 

0.12 I I I I I I I I 1 1 

klks 
FIQURE 10. kaq5(k)/o:k, as a function of k/k,  a t  t = 0.2 for E ( k ,  0) as given by (3.7) (run 5,  
table 1). Here o, and k, are the Kolmogorov velocity and wavenumbers, and # is given by (3.8). 
-, ALHDI; -1-, SBALHDI; points, data of Grant et al. (1962). 

with T ( k , t )  as given by (3.4). Here k, is the smaller zero-crossing wavenumber of 
T ( k , t )  and k, is the larger zero-crossing wavenumber. The ALHDI and SBALHDI 
approximations are both in reasonable agreement with the numerical simulations. We 
note that for two dimensions, as found previously in three dimensions, the SBALHDI 
tjpproximation appears to yield a smaller energy and enstrophy transfer than the 
ALHDI approximation. A more detailed comparison is given in figures 8 (a)and (b) ,  
which depict the spectrum k4E(k,t) at t = 0-8 for runs 3 and 4 respectively. These 
figures, in conjunction with figures 6 and 7, indicate a larger transfer to very small and 
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FIGURE 11. S( t )  as given by (3.3) for run 5 (table 1 ) .  ---, ALHDl; ---, SBALHDI. 

large wavenumbers for the ALHDI than for the SBALHDI approximation, par- 
ticularly at  the larger Reynolds number (run 4). The ALHDI approximation appears 
here to be in somewhat better agreement with simulation than the SBALHDI 
approximation, in contrast to the case of three dimensions at low Reynolds numbers. 
Overall, the agreement between the ALHDI approximation and simulations in two 
dimensions appears to be much more satisfactory than in three. 

3.3. Tidal-channel measurements 

In  order to describe three-dimensional turbulence at large enough Reynolds numbers 
to approach inertial-range behaviour we take the initial spectrum as 

E(k,O) = 2rk-g. (3.7) 
Other parameters for this run (run 5) are listed in table 1 and are identical to those 
for ALHDI calculations reported earlier (Kraichnan 1966). We have repeated these 
ALHDI calculations using the present numerical technique so that the role of numerical 
errors will be minimized in our comparison of the two theories. Our present ALHDI 
results are in good agreement with those reported earlier ( - 5 %). Figures 9, 10 and 11 
compare the approximations with the data of Grant et al. (1962). Figure 9 depicts the 
dimensionless inertial-range quantity 

k+$ (k) I& 

k2$(k )14  k8. 

while figure 10 gives the one-dimensional dissipation function 

Here 
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E is the dissipation of kinetic energy, ks is the Kolmogorov wavenumber (v / s3$  and 
vs = vks is the Kolmogorov velocity scale. The abscissa is k/k8.  The figures show self- 
similarly evolving profiles at  R, - 400. This Reynolds number was found through 
numerical experimentation to be sufficiently large for the dissipation profiles to be 
asymptotic within computational error. 

Both theories agree well with experiment in predicting the transition region between 
the inertial and dissipation ranges and in reproducing the dissipation-range data. 
The agreement with experiment in the far dissipation range appears to be better for 
the SBALHDI than for the ALHDI approximation, however this is the region where 
the experimental data are most uncertain. Figure 9 suggests a slightly larger Kolmo- 
gorov constant for the SBALHDI approximation ( -  2-0)  compared with a value of 
1-78 for the ALHDI approximation. (We have not computed a Kolmogorov constant 
a t  R, + m sepa,rately, as in Kraichnan 1966.) The observed trends are consistent with 
a slightly smaller energy transfer to large k for the SBALHDI approximation. This 
is also indicated by the behaviour of the skewness (3 .3 ) )  which is shown in figure 11.  

4. The effective straining efficiency at small scales 
The preceding numerical results show stronger energy transfer a t  small scales in 

the ALHDI approximation than in the SBALHDI approximation. The effect is more 
marked in three dimensions than in two. In  I this was predicted from properties of the 
Lagrangian strain covariance 

which is related to the stretching of small-scale structures in the SBALHDI approxima- 
tion, and properties of the quantity playing the analogous role in the ALHDI 

where bij(x, tls) is the right-hand side of (1.2). We noted in I that B(t1s) as a function of 
t - s has zero slope if the turbulence is stationary (it is an even function of t  - s) while 
the slope of B’(t1s) satisfies 

The right-hand side of (4 .3)  is proportional to the rate of enstrophy production. It 
is positive in three dimensions and zero in two dimensions. We inferred from this 
behaviour at  t = s that B(tls) should show relatively more persistence in three dimen- 
sions than in two, when compared with B‘(t1s). In  addition to this effect, analytical 
results for Lagrangian statistics of a normally distributed, frozen velocity field ob- 
tained in I suggested that in both two and three dimensions U*(k, t ls )  tends to have 
a shorter correlation time than U(k, t ls)  even when there is no energy transfer. 
Finally, (4 .3 )  is consistent with the observation, in the integrations, of a greater 
difference in straining efficiency between the ALHDI and SBALHDI approximations 
when the initial spectrum is concentrated so that there is a strong early surge of 
transfer into small scales. 

The relation of B ( t J s )  and B’(t1s) to the effective straining of small scales can be 
exhibited with particular clarity in the convection of a passive scalar field by turbulence. 

20 PLM 9’ 
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FIGURE 12. Act) and AB(t) [see (4.5) and (4.8)] as a function o f t  for (a) the three-dimensional 
runs and ( b )  the two-dimensional runs. 

Let F(k,  t )  be the spectrum function of an isotropically distributed passive scalar 
without molecular diffusivity, normalized such that 

is the scalar variance. If the scalar field is statistically independent of the velocity 
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field at t = 0, the ALHDI approximation for the evolution of F ( k ,  t )  at values of k 
large compared with the wavenumbers of the velocity field gives 

where 

aF(k, t)/at = [D(D + 2)]-1A(t)  - k - - D kF(k,  t )  , 
; k [ ( : k  ) ] 

1 
2 

R ( t )  = - lot B’(t1.s) ds 

and D is the dimensionality of space [cf. Kraichnan 1968, equation (4.8); 1974, equa- 
tion (5.12)]. Batchelor (1959) derived for k large compared with dissipation-scale 
wavenumbers the spectrum 

where x is the steady rate at which scalar variance is fed into the spectrum from small 
wavenumbers. Equation (4.4) implies that the steady-state value of the dimension- 
less coefficient C is 

F ( k )  = C ( ~ / c ) * x k - l ,  (4.6) 

C = ( D  + 2) [ ( V / E ) *  R ( ~ 0 ) l - l  (4.7) 

[cf. Kraichnan 1974, equation (5.14)J. 
The right-hand side of (4.4) may be derived as the lowest order in a renormalized 

perturbation expansion in which moments of the velocity field are expressed in terms 
of the Lagrangian velocity covariance (Kraichnan 1977). If instead the moments are 
expressed in terms of the Lagrangian strain covariance, the lowest order yields a 
SBALHDI approximation for the scalar transfer function. Equations (4.4) and (4.7) 
are unchanged in form but R(t) is replaced by 

1 t  
RB(t )  = - jo B(t1.s) ds. 

2 

The numerical values of h ( t )  and AB(t)  for the several integrations of the ALHDI 
and SBALHDI equations are shown in figures 12 (a )  and ( a ) .  In accordance with the 
expectations stated above, the SBALHDI values for three dimensions indicate 
markedly less net stretching of the scalar field at small scales than the ALHDI values, 
while the difference is much smaller, but still present, in two dimensions. 

Gibson (1968) derived bounds on the possible value of C by assuming that the strain- 
ing tensor is statistically isotropic and constant in time with statistically sharp 
eigenvalues. For general dimensionality D his argument gives 

(4.9) 

In actual turbulence the statistical fluctuation of the eigenvalues will raise the lower 
bound on C (Kraichnan 1968) while the upper bound will be infinite unless the intermit- 
tency of the statistical distribution of the velocity field is bounded. Note that for D = 2 
the two bounds for sharp eigenvalues coalesce. For both two and three dimensions the 
SBALHDI values of C indicated by figures 12 ( a )  and ( h )  satisfy Gibson’s lower bound 
while the ALHDI values do not. In  three dimensions the SBALHDI values are 
reasonably consistent with the experimental measurements by Clay (1973) (C N 2.0) 
while the ALHDI values are too small. There are no two-dimensional measurements. 

To conclude, we mention an alternative way of applying the strain-based Lagrangian- 
history concept to scalar convection. The approximation just described takes the 
straining field and the scalar field as basic. Instead we could take the straining field 

[ 2 0 / ( D -  1)]3 < c < [2D(D- 1)]3. 

20-2 
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and the gradient of the scalar field as basic. This would make a difference in the final 
results. 
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Appendix 

approximations are built from the projection operator 
The coefficients entering the two- and three-dimensional ALHDI and SBALHDI 

Pij(k) = b'ij - ki kj/k2. 

P'(P) = k-2[(k.P)p(P)+ (P(P).k)Pl, 

P"(q) = F2[(P -9)  P(q) + (Yq) .PI sl, 

(A 1)  

(A 2) 

(A 3) 

Pij(P) = P,j(P), Gj(q) = P,(q)* (A 41, (A 5 )  

G,, = @,[k * P'( - 9) * P(k) * ql, (A 6) 

G,, = @,P. P(q) .kl tr (P(k)), (A 7) 

Gp, = @,[k.P(p).P(k).P(q).p+k.P(p).P(q).P(k).p 
+k.P(q) .P(p) .P(k) .p+P(k):  P(p)k.P(q).k], (A 8) 

C;,, = @',[p.P'(p).P(k).P(q).k+P(k): P'(p)k.P(q).k], (A 9) 

a,, = ~' , [p.P(q) .P'(p) .P(k) .p+P(k):  P'(p)k.P(q).kI, (A 10) 

cg, = @,[k.P(P).P'(q).P(k).P+P.P'(q).P(k).P(P).kI, (A 11)  

O2 = 2/sin ( p ,  q )  (for two dimensions), (A 13) 

Q3 = &rpq/k (for three dimensions), (A 14) 

For the SBALHDI approximation we define 

while for the ALHDI approximation we take instead 

Then the coefficients are 

C&,, = @,[k.P"(-q).P(p).P(k).p+p.P(k).P"(-q).P(k).k], (A 12) 
where 

and sin ( p ,  q )  is the sine of the angle between p and q in the triangle formed from k , p  
and q. With the definitions (A 4) and (A 5 ) ,  the correspondence between the ALHDI 
coefficients B, C ,  D and D' as given in Kraichnan (1966) and the present Cc is 

(Co,C1,C2,C3,C4,C7,CB)~ (O,C,D,B, D',B- D' ,D- B). (A 15) 

To obtain the DI equations from (2.7) and (2.8) set allcoefficients except Bkpq = Cip,  
as given by (A 8) equal to zero and replace all U and C functions with the correspond- 
ing Eulerian functions. 
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